Multi-fluid simulations of Ganymede’s magnetosphere
نویسندگان
چکیده
[1] Comparative studies of 3D multi-fluid simulations with Galileo magnetometer data are used to develop a quantitative model of the currents and fields within Ganymede’s magnetosphere as well as its bulk plasma environment. The model includes contributions from Jupiter’s magnetosphere and the flux of different ion species originating from Ganymede’s ionosphere. Comparisons between the magnetometer data and the simulation demonstrate good agreement for the strength and structure of Ganymede’s magnetosphere. An ionospheric outflow rate of 10 ions/s was found for the simulation, which is well correlated to the sputtering rate determined for the surface of Ganymede that actively supplies the ionosphere. Qualitative comparisons are made with the Hubble Space Telescope observations of Ganymede’s UV aurora. The size and location of regions of Jovian magnetospheric plasma precipitation are similar to the observed UV emissions. Plasma acceleration due to reconnection and the size of Ganymede’s cusps are also examined.
منابع مشابه
The role of ion cyclotron motion at Ganymede: Magnetic field morphology and magnetospheric dynamics
[1] Ion cyclotron motion can play a role in shaping magnetospheres and governing magnetospheric dynamics, particularly in weakly magnetized systems such as the moons of outer planets. However, MHD explicitly neglects such effects. We demonstrate the importance of ion cyclotron motion in the near space environment of Ganymede using 3-dimensional multi-fluid simulations to account for Galileo mag...
متن کاملIon energization in Ganymede’s magnetosphere: Using multifluid simulations to interpret ion energy spectrograms
[1] We investigate the ion population and energy distribution within Ganymede’s magnetosphere by examining Ganymede’s ionospheric outflow as a source of heavy (O) and light (H) ions and the Jovian magnetospheric plasma as an external source of heavy ions. We develop a method for examining the energy distributions of each ion species in a three-dimensional multifluid simulation in a way directly...
متن کاملThree-dimensional MHD simulations of Ganymede’s magnetosphere
[1] Ganymede is unique among planetary moons because it has its own magnetic field strong enough to form a magnetosphere within Jupiter’s magnetospheric environment. Here we report on our three-dimensional global magnetohydrodynamic (MHD) simulations that model the interaction between Ganymede’s magnetosphere and the corotating Jovian plasma. We use the measured field and particle properties to...
متن کاملResistive MHD simulations of Ganymede’s magnetosphere 1. Time variabilities of the magnetic field topology
[1] The time-variable structure of Ganymede’s magnetosphere is studied by means of resistive MHD simulations. Using the magnetometer measurements of the Galileo spacecraft in the first few Ganymede flybys as examples, we find that the plasma flow pattern inside the Ganymedian magnetosphere could be subject to significant changes. Furthermore, the boundary of the polar cap dividing the open magn...
متن کاملDynamics of Ganymede’s magnetopause: Intermittent reconnection under steady external conditions
[1] Magnetic reconnection at the terrestrial magnetopause is frequently intermittent, leading to the formation of localized reconnected flux bundles referred to as flux transfer events (FTEs). It remains unclear whether the intermittency of the process is intrinsic or arises because of fluctuations of solar wind properties. Here we use Ganymede’s magnetosphere, which is embedded in a background...
متن کامل